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Motivations Results and discussion Vibrational phonon Density of States

The Fourier transform of the velocity-velocity autocorrelation
Structural parameters function from the trajectory of each atom provides phonon
density of state in molecular dynamics simulations.

 Exploring and developing rechargeable batteries with
ower self-discharge
 Understanding the suitability of new materials to

substitute the common batteries materials The structure of LiCoO2 at the equilibrium state was measured by the iot < VO)v(t) >
» Enhancing the batteries lifetime and power/energy radial distribution function (RDF). D (0) = Ie < vO)V(0) > dt EQ.2
Enhancing the batteries performance by modeling and  These peaks are sharp at low temperatures and become broad at
eneng e P Y MOEEINS higher temperatures which is due to thermal motion. | » For all orientations, the lithium ions have higher phonon
optimizing their thermal, structural, electrical, and . The height of the first peak decreases as the temperature increases DOS.
temperatures and the crystalline volume expansion. decreases.
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Approach _
* Molecular dynamic simulations of LiCoO2 as the cathode = 3—
material using LAMMPS
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* Implementing Buckingham potential for determining the : M | !
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Goals Figure 2.Radial distribution functions of Li-O at various temperatures
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* Understanding the thermal expansion of the system and Iits
effects on the batteries performance.

* Understanding the structural stabilities of the system at

high temperatures.

* Li-LI has the highest peak indicating lithium ions are unstable than
other sorts of ions in the LICoO2 crystal.
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» Understanding the effects of the lattice distortions on the ; A i _
charge transport of the LiCoO2 cathode material. 151 i T -
- Understanding the diffusion of species and their '
contributions on the LiCoO2 batteries performance. S 1o} : R s

Table 1. Cohesive energies of ions
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-m Figure 5.Partial phonon density of states of various ions for: a) XX, b) YY, and c) ZZ
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Simulation method

The interaction pair potential between ions i and j consists of o 10 Conclusion
a short-range term, the long-range Coulombic term and van
der Waals interactions. These short-range interactions were Figure 3.Radial distribution functions of Li-Li, oy . . .
. . .  Lithium ions are more thermally activated comparing to those
modeled using the Buckingham potential: 0-0 and Co-Co at room temperature

of oxygen and cobalt ions.
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Vi (r;) = Aexp(-r; /r)—Cr, Eqg.1 di<ol » Lithium ions have higher MSD comparing to those of oxygen
Mean square displacement and cobalt ions.
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and r Is the Interatomic distance. Figure epicts the . . .

. gLt P . The mean square disp acem_ents (MSD) as d ”r?C“O” 0 “”.“e of eac temperature Increases, the degree of disorder In the
supercell as well as the unit cell of a lithium cobalt oxide species were calculated to Investigate the diffusive properties of each _ _ _ _ _
cathode materials. species. crystalline lattice Increases especially at higher

 The MSDs reach a constant value after a relaxation time. temperatures.
3333 g  The mobility of lithium ions Is anisotropy because lithium ions are less « Higher lattice distortion and expansion causes the reduction
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